

Multiplication Circles to 10

Contents

Unit 1

Multiples Page 5
Factors Page 8
Squares，roots and powers Page 12
Calculating square roots 14Unit 2
Mixed operations Page 17
Multiplication Page 21
Multiplying decimals Page 21
Multiplying fractions Page 22
Division Page 25
Dividing decimals Page 26
Dividing fractions Page 28
Fractions Page 30
Equivalent fractions Page 30
Multiplying to find equivalent fractions Page 31
Comparing fractions Page 32
Unit 3
Polyhedra Page 36
Euler＇s formula Page 37
Net and solid． Page 38
Graphs and what they say Page 40
Conversion graph． Page 42
Understanding more about graphs Page 43
Average Page 43
Mean Page 43
Median Page 44
Mode Page 44
Range Page 45
Converting fractions to decimals and decimals to fractions.. Page 47
Method 2 Page 49
Convert a decimal to a fraction Page 50
Unit 4
Volume of cubes, prisms and pyramids Page 54
The volume of a pyramid Page 56
Pyramid with a rectangular base Page 56
Pyramid with a triangular base Page 56
Calculate the volume of rectangular prisms Page 57
Proportions Page 60
Percent Page 64
Sequences and series Page 67
Arithmetic sequences Page 68
Geometric sequences Page 69
Special sequences - triangular numbers Page 70
Special sequences - square numbers Page 71
Special sequences - cube numbers Page 72

UNIT 1 Multiples

Read, colour and write.
Multiples of 2 end in \qquad
Multiples of 5 end in \qquad
Multiples of 10 end in

Multiples of 2 blue.

6	11	4
10	5	8
3	7	1
2	9	12

Read and complete.

A multiple is a number made by multiplying together two other numbers. $6 \times 8=$ \qquad , so 48 is a common multiple of \qquad and
The lowest or least common multiple (LCM) of 6 is 24 .
Find two common multiples in each set.

a) 5

4
b) 6

8
c) 3

2
d) 7

4

Find three common multiples in each set of numbers. Then circle the lowest common multiple (LCM).
a) 3

4
8
b) 5 \qquad
6 \qquad
4
Write all the multiples of the numbers up to 100 . Then answer the question.

Did you find any common multiple for the three numbers? \qquad

Look and put a tick if the number is a multiple of 3 or 5 . If it is not a multiple, put a cross.

Number	Multiple of 3	Multiple of 5
21	\checkmark	
12		
8		
15		
6		
10		
30		

Read and answer the questions.

1. What are the multiples of 4 between 10 and 25 ?
2. Which numbers are multiples of 6 ?
a) I am a multiple of 4
c) I am even.
b) I am between 20 and 30 .
d) I am 2 less than a multiple of 10 .

What number am I?

Factors

Look and write the missing factors. The write, in your own words, what a factor is.

Factor: It \qquad
\qquad
$10=\ldots \times 5 \quad 18=\ldots \times \ldots$
$36=2 \times 2 \times 3 \times 1$
$24=\ldots X \ldots 30=\ldots X$ _
$60=2 \times 3 \times 2 \times \ldots \ldots$
$32=$ \qquad
\qquad $39=\ldots x$ \qquad

Read and complete.

Factors are whole numbers that will divide exactly into other whole numbers. A number which is a factor of two or more given numbers is called "The common factor of the given numbers."
Ex. 1.
Find the common factors of 60,15 and 45
The factors of 60 are $1,2,3,4,5,10,12,15,20,30$ and 60. The factors of 15 are $1,3,5$, and 15 .
The factors of 45 are $1,3,5,9,15$ and 45 .
The common factors of 60,15 and 45 are \qquad , \qquad ,

and

The highest common factor (HCF) is \qquad .

If a number only has two factors, itself and 1 , then it is a "Prime number." The prime factors of a number are all those factors of the number which are themselves prime numbers.
Ex. 2.
All the factors of 12 are 1,2,3,4 and 12, but its only prime factors are \qquad and \qquad .

Find the common factors for each of these numbers．Then circle the highest common factor（HCF）for each set of numbers．
a） 40
56
b） 35
80

64 \qquad
d） 90
115 \qquad

One way to work out prime factors is to use factor－trees．

Ex．What are the prime factors of 36 ？
Start with any pair of factors of 36 and factorize them．

Continue until you get prime factors．
$2 \times 2 \times 3 \times 3=$
$2^{2} \times 3^{2}$
2 and 3 are prime factors of \qquad ．

Draw factor trees for the following numbers.

Look at write the factors of the numbers. Then read and complete the definition.

Number	Factors	Number	Factors
1	1	11	
2	2,1	12	
3		13	
4		14	
5			
6		16	
7		17	
8		18	
9		19	
10		20	

Prime numbers:

They a \qquad e n \qquad $s \dagger$ \qquad th \qquad e o \qquad y 2 f \qquad s; 1 and \dagger s.

Now that you got the definition of Prime Numbers, go back to the table and colour all the boxes (from 1 to 20) that have prime numbers.

Squares, roots and powers

TAKE тне
 CHALLENGE

Read and match the operations with the answers in the first section, what are they called?

Read and solve the operations in the second section, what are they called?

$\sqrt{25}$	$=$	8
$\sqrt{81}$	$=$	4
$\sqrt{64}$	$=$	5
$\sqrt{49}$	$=$	9
$\sqrt{16}$	$=$	7

Read and complete.
These are examples of squared numbers; when 2 identical whole numbers are multiplied together.

$3 \times 3=$ \qquad
\qquad
1 squared $=$ \qquad
$4 \times 4=$
$1^{2}=$ \qquad

3 squared = \qquad 4 squared = \qquad
$3^{2}=$ \qquad
$4^{2}=$ \qquad

Solve these.

a) 9^{2}
b) 8^{2}
C) 18^{2}
d) 7^{2}
e) 11^{2}
f) 32^{2}
g) 6^{2}
h) 25^{2}
i) 44^{2}

Look carefully and solve these．

a） $5^{2}+2^{2}=$
d） $11^{2}+10^{2}=$
b） $4^{2}+9^{2}=$
e） $110^{2}+31^{2}=$
c） $18^{2}+13^{2}=$
f） $25^{2}+12^{2}=$

Read and find the value of the numbers．
Sometimes you need to multiply a number by itself several times．$\quad 2 \times 2 \times 2 \times 2=$ \qquad
A quick way to write this is $2^{4}-2$ to the power of 4 ． $2^{4}=$ \qquad

Extended form

a） $3^{4}=$ \qquad
\qquad
b） $2^{3}=$

\qquad
c） $10^{3}=$

$=$ \qquad
d） $4^{5}=$

$$
=
$$

\qquad
e） $5^{4}=$

$=$ \qquad

Look and complete the chart

Power	Base	Index	Meaning	Numeral
4^{2}	4	2	4×4	16
2^{4}				
10^{5}	6	3		
	3			$8 \times 5 \times 5 \times 5$

Calculating square roots

Read and answer the questions. Write complete math sentences.

a) What is 19^{2} ?
b) What is the next square number after 144 ?
c) What is the square root of 361 ?
d) What is 11^{4} ?
e) What is 14 squared?

Read and write the square root of each of the numbers below.
On a calculator, there is a symbol. This is called a square root key. The square root of a particular number is the number that was multiplied by itself to reach that number.

a) $\sqrt{64}$
d) $\sqrt{900}$
b) $\sqrt{25}$
e) $\sqrt{144}$
c) $\sqrt{81}$ \qquad f) $\sqrt{49}$

Read and calculate the square root.

A square root is the opposite of a square number. One way to calculate the square root is to divide the number by prime numbers until it is reduced to 1 .

Ex.

Look carefully and solve these.
a) $\sqrt{64}+\sqrt{100}$
b) $\sqrt{289}-\sqrt{121}$
c) $\sqrt{1521}-\sqrt{1296}$

Estimate each of the following roots. Then use a calculator to check your estimates and, when the answer is not a whole number, round the number to the nearest tenth.

UNIT 2 Mixed operations

TAKE тне CHALLENGE

Read and answer the questions．

Ruben just sold his house and his car and this is the list of things he bought．

Ruben sold his house for \＄ 438000 and his car for \＄ 123000 ．Before going to put the money in the bank，he bought a new apartment for \＄ 195000 and a motorbike for 85000. His wife asked him to buy a new pet．They got a puppy from the pet store for $\$ 250$ ． Ruben also bought some pairs of shoes and tennis for his children．He bought 3 pairs of shoes for $\$ 350$ each and 4 pairs of tennis for $\$ 420$ each．
How much money did he get for the house and the car together？
How much money did he spend on shoes and tennis？
How much money does he have left？ Did he need more money？

| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

Read and complete the questions．

How do you interpret a mathematical statement when it has more than one operation？
Read：

$8+4 X$
$5=$ \qquad

What happened to the mathematical statements？
How did you find the answers？

If your answer was "I did the multiplication first!" then you were right! When it comes with working out mathematical statements of this type, you must follow a specific order that's been agreeded upon. Remember, you have to go from left to right.

Read and check if you have to do the operations or cross if you don't need

 them now.1) Parenthesis
2) Exponents
3) Multiplication or division
4) Addition or subtraction \square

Read and check or cross. Then follow the order and complete.

What happens if you have a mathematical statement which has operations at the same level; this is multiplication and division or addition and subtraction, or an exponent?

- You just go from left to right!
$2+3-2+5-1=?$

$$
5-2+5-1=
$$

$$
3+5-1=
$$

$$
8-1=
$$

\qquad
$9 \times 2 \div 3 \times 2=?$
$6 \times 2=$ \qquad
$2 \times 3^{2}=$ \qquad $(2 \times 3)^{2}=$ \qquad
$18 \div 3 \times 2=\quad 2 \times 9=$ \qquad
$6^{2}=$ \qquad

Look and solve these.

Remember:

- Follow the order of operations.
- Go from left to right.

Set 1

a) $12-4 \times 2=$ \qquad b) $5+2^{2}=$ \qquad
c) $10 \times 2-4=$

Set 2

d) $6 \times 4^{2}=$ \qquad e) $8^{2}+6=\square \quad$ f) $4+2 \times 4=$ \qquad

Set 3
g) $(6+4)^{2}+5=$
h) $4^{2}+2-(2+3)=$ \qquad
i) $2^{2}+2+\left(4^{2}+1+2\right)=$
\qquad

Read and answer the questions. Then explain what you did to find the answer.
The sum of two numbers is seven and their difference is one.

What are the two numbers?
\qquad
\qquad
\qquad
\qquad
\qquad

Berta has a box of doughnuts that can be divided evenly among three and five friends.

What is the number of doughnuts that can be in the box?

A rectangular fence around a garden measures 28 meters. If the length of the fence is 6 meters, what is the width?

Multiplication

Read and answer the question. Use the grid to show the procedure.

Richard buys 3 liters of green paint and 2 liters of red paint.
If the green paint is $\$ 16.95$ a liter and the red paint is $\$ 18.95$ a liter, how much does Richard spend on paint?

Multiplying decimals

Multiply the first number (the multiplicand) by the farthest-right digit of the multiplier. Ignore the decimal points for now.
2. 3

Multiply the first number (the multiplicand) by the

2. 3 Add up the numbers (the partial products you just
$\begin{array}{r}x \quad 4.1 \\ \hline 2 \\ 9 \\ \hline 9\end{array}$ calculated), still ignoring the decimal points.

$$
\begin{array}{rr}
& 2.3 \\
\times & 4.9 \\
\hline & 2 \\
\hline 9 & 2 \\
\hline 9 & 0 \\
\hline 9 & 3
\end{array}
$$

2. (3) Count the total number of digits to the right of the
decimal points in the two numbers you are multiplying (the multiplicand and multiplier). Place the decimal point in your answer by counting those many digits from the right.

\mathbf{x}	$\mathbf{4}$	$\mathbf{1}$			
	$\mathbf{2}$	$\mathbf{3}$			decimal points in the two numbers you are
:---					
multiplying (the multiplicand and multiplier).					
$\mathbf{9}$					
$\mathbf{2}$					
$\mathbf{9}$					

Solve these.

a)	2.		4	5		b)	6	5	5.	4	5	c)	2					
	X		4	7			X			4.	6					5		
d)	3		5.	2	9	e)	4			8		f)	3	1	4.	7	7	
	X				3					9			X		4.	2		

Multiolying fractions

Read and multiply the fractions.

There are 3 simple steps to multiply fractions:

1. Multiply the top numbers (the numerators).
2. Multiply the bottom numbers (the denominators).

3. Simplify the fraction, if needed.

PRisin
 You're up!

Look and complete the puzzle.

Division

Read and answer the question. Use the grid to show how you found the answer.
Susan's car gets 29.7 miles per gallon on the highway.

If her fuel tank holds 10.45 gallons, then how far can she travel on one full tank of gas?

Look and answer the question. Then solve the divisions.

- Do you remember how to work out divisions?

Dividing decimals

Read and look. Then work out the divisions.

1. Bring the decimal point straight up.

Bring down the 3 to continue dividing, but don't bring down the decimal point.
3. No more digits to bring down so just add a zero.
$25.3 \div 7=3.6$ (rounded to the nearest hundredth)
"Remember to use the grid for procedures."
$7.82 \div 4=$
$6.35 \div 5=$
$18.27 \div 3=$
$45.62 \div 7=$
$23.96 \div 3=\quad 65.32 \div 9=\quad 40.24 \div 8=\quad 62.74 \div 2=$

Dividing fractions

Read and look. Then work out the divisions.

Read and answer the questions.

A member of the school track team ran for a total of 179.3 miles in practice over 61.5 days.

A store owner has 17.11 lbs . of candy. If she puts the candy into 7 jars, how much candy will each jar contain?

Paula will pay her new car in 36 monthly payments. If her car loan is for $\$ 19061$, then how much will Paula pay each month?

Fractions

Read and answer the question.

Ben has a recipe that calls for $2 / 4$ of a cup of milk. He only has a $1 / 2$ measuring cup.

How many times should Ben fill his measuring cup to get the right amount? Explain what you did to find the answer.

Equivalent fractions

Read and colour.

We say two fractions are equivalent when they represent the same amount.

Look at the pictures and draw the representation of an equivaient fraction.

Multiplying to find equivalent fractions

Read and answer the question.

Sam said $3 / 4$ of the chocolates were eaten, but Sara thought $9 / 12$ of them were eaten. Their mum said both kids were correct.
Why were they both right?

Read, look and write the missing numbers.
Equivalent fractions can be found by multiplying both numerator and denominator by the same non-zero number.
a) $\frac{5}{6} \times-=\frac{20}{24}$
(b) $\frac{3}{15} x$
c) $\frac{2}{7} \times-=\frac{6}{21}$
d) 8

$\frac{15}{7} \times-=\frac{75}{35}$
f) $\frac{8}{16} \times-=\frac{16}{32}$

Look and write the equivalent fraction.
a)

b) $\frac{3}{5} \times-=\frac{}{25}$
d) $\frac{4}{5} \times-=\frac{}{45}$
e) $\frac{7}{15} \times-=\frac{}{30}$
c) $\frac{9}{16} \times-=\frac{}{64}$
f) $\frac{5}{12} \times-=\frac{}{36}$

Read and order the fractions. Then answer the question.

$$
\frac{8}{4} \cdot \frac{5}{9} \cdot \frac{7}{2} \cdot \frac{3}{8} \cdot \frac{6}{5}
$$

What did you do to find the correct ordering?

Comparing fractions

Read and complete.

First you need to write the fractions as equivalent fractions, with the same denominator.
To compare 6 / 3 and 5 / 4, you have to multiply the fraction by the denominator of the other fraction.
$\frac{6}{3} \times 4=\frac{6}{3} \times 4$
$\frac{5}{4} \times 3=\frac{5}{4} \times \frac{3}{4}$

Now you can compare:
$\frac{24}{12} \quad$ is more than $\quad \frac{15}{12}$

Compare the fractions - write the complete procedure.

a)	4																		
	12		9																

b)	8	$\&$	21																
	6	$\&$	7																

c)	11	$\&$	25																	
	4	$\&$	2																	

e)	4	$\&$	6																
	7	$\&$	8																

Read and answer the question.

previous activity?

Read and complete.

To find a fraction between fractions you have to:

1) Add the numerators together and denominators together.
$\frac{4}{6}$ and $\frac{8}{9}=\frac{4+8}{6}+9 \quad \frac{12}{15}$

12 / 15 lies between $4 / 6$ and $8 / 9$. To find the exact halfway, you should follow this procedure:
2) List the factors of both numbers and spot the GCF.
$12=$
2
3.)
4. 6
12
$15=1$,
3.)
5
15
$12 \div 3=4 \quad$ So 4 is the fraction that lies exactly halfway between $\frac{4}{5}$ and $\frac{8}{9}$
$15 \div 3=5$
Look and find a fraction in between. Then find the halfway between them.

d) $\frac{18}{4}$ and $\frac{22}{\mathbf{4}}=$| | | | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | |

moung You're up!

Look, colour and write equivalent fractions.

UNIT 3 Polyhedra

TAKE the

 CHALLENGELook and fill in the chart. Then walk around school. Find a shape of each type and explain why you think it is there and why it fits that place.
(If you cannot find them at school, just think of where you could.)

Shape

Name
Number of sides
Where at school
Why it fits there

Read and label the picture and complete.

A polyhedron is a solid shape with flat faces. The meaning of the word is "many faces." Each face is a polygon (a flat shape with straight sides). These shapes are made up of faces, vertices and edges.

3D shapes can be described in three ways:

1. Faces - the sides of the shape.
2. Vertices - the corners.
3. Edges - where the faces meet.

- A cuboid has faces.
- A cuboid has vertices.
- A cuboid has . edges.

Euler's Formula

Read and complete the chart. Then use the formula to check your answers.
When we count the number of faces (the flat surfaces), vertices (corner points) and edges of a polyhedron, we discover an interesting thing:

The number of faces + the number of vertices $\boldsymbol{-}$ the number of edges $=2$.

Example:

Net and solid

Read and write the name of the shape.

This is what a shape looks like when it is opened out flat.

Find some of the shapes named before in the objects you use every day. Then glue pictures and write what they are and the shapes they are / have.

Name
Shape

\qquad

Use toothpicks and clay to make shapes. Then take a picture of each and glue them in the boxes.

How many shapes did you make?

Graphs and what they say

TAKE THE CHALLENGE

Read and make a graph.

How many types of graphs do you know?
How are they different?

In groups, choose one topic and make a graph - interview all the kids in your class to get information to work with.
Topics:

- Favourite colour
- Favourite animal
- Favourite band
- Favourite food
- Favourite flavour
- Favourite movie

According to th results, what are your thoughts about the graph?
\qquad
\qquad
\qquad

Look and match the pictures with the definitions. Then use the words in the box to label the graphs.

Pie chart

Bar graph
Pictograph
Line graph

Shows data with a circle which is divided from its centre into several parts to show how the total's divided.

Shows data with rectangular bars with heights and lengths proportional to the values they represent.

$C=10$ apples $C=5$ apples

Shows how a variable changes over time.

Conversion graph

Read and use the graph to complete the statements.

It is a type of line graph that shows the relationship between two units of measurement.

1. Convert 8 gallons to litres: \qquad litres $=8$ gallons .
2. Convert 80 litres to gallons: \qquad
3. Convert 14 gallons to litres: \qquad
4. Convert 15 miles to kilometres:
5. Convert 80 kilometres to miles:

Make your own conversion graph using the relation between US dollars and Mexican pesos.

Write down some important information you may need for the
\qquad
\qquad
\qquad

Understanding more about graphs

Read and answer the question．

Sandy has 4 candies，Nina has 5 candies and Gina has 3 candies．
What is the mean number of candies each of them has？
Tip：

Students need to share to find the answer．

To understand the given data，it is really important to find the average．

Average：

It is a number that tells you what most of the values，in the data set，are closer or similar to．
There are three types of average：mean，median and mode．

Mean：

It is the total number divided by the number of items．

$4+5+\mathbf{3}=\mathbf{1 2}$ ．If the girls are going to share the candies and everybody has to have the same number，you add and then divide： $12 \div 3=4$ ．
Each girl will have 4 candies，so the mean number is 4.
Look and find the mean number for each set．

$\$ 22$	$\$ 36$	$\$ 51$	$\$ 45$	$\$ 96$	
952 g	541 g	218 g	233 g	146 g	
56 km	75 km	83 km	23 km	63 km	
13 books	34 books	22 books	4 books	67 books	

Median:

It is the middle value of a set of data arranged in order. When there is an even number of values, the median is the mean of the two middle values.
$5,7,9.11,15=$ the median is 9 because it is the number in the middle, but for $10,12,14$ and 16 , you need to add $12+14=26$ then $26 \div 2=13$, so 13 is the median.

Look and find the median.

a) Kilometres run by each participant. Median $=$ \qquad

Joe	Ben	Tom	Frank	Dylan	Ron
5	7.5	6	3.4	8.1	9

b) Number of boxes in each room. Median =

Room 1	Room 2	Room 3	Room 4	Room 5	Room 6
15	11	17	13	18	13

c) Salaries. Median = \qquad

Person 1	Person 2	Person 3	Person 4	Person 5
$\$ 4000$	$\$ 5000$	$\$ 3000$	$\$ 6000$	$\$ 2000$
Mode:				

Person 1
\$4000
Mode:
It is the value that appears the most often or has the highest frequency in the data set.
This is the number of toys that each students has in Mrs. Rosa's classroom.
$\begin{array}{llllllll}\text { Student } 1 & \text { Student } 2 & \text { Student } 3 & \text { Student } 4 & \text { Student } 5 & \text { Student } 6 & \text { Student } 7 & \text { Student } 8\end{array}$ 3 3 2 2 3 6 5 3 1

Which (value) number appears the most? \qquad , so the mode for this set is \qquad .

This is the number of visitors that the City Zoo has per year.

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
560	324	765	700	560	700	850	560	300	765	450	800

Which (value) number appears the most? \qquad , so the mode for this set is \qquad .

Range:

It is the difference between the greatest value and the smallest value in each set of data.
The following chart shows the number of balls each player threw at the game.

Player 1	Player 2	Player 3	Player 4	Player 5
11	8	15	5	9

The greatest number is 15 and the smallest is 5 so: $15-5=10$. The range is $\mathbf{1 0}$.
Look and find the mean, median and mode for each.

Basketball Points				Golf Scores				
6	22	12		70	90	90	68	75
a) mean: b) median: c) mode.							
Data				Med				
a) $10,17,10,14,19$								
b) $18,19,64,19,32,60,61$								
c) $11,38,13,38,40$								
d) $12,15,11,15,13,10,15$								

maind
 You're up!

Use the grid to draw a graph and give complete information (mean, median, mode and range).
a) Students and number of books they have read.

Mean: \qquad Median: \qquad Mode: \qquad Range: \qquad
$f(x)=$?
46

Converting fractions to decimals and decimals to fractions

Read and answer the question.

Marco used the following steps to form a number

TAKE the

 pattern.a) The first term is 3 .
b) The second term is 5 .
c) Each term after the second is the sum of the two terms just before it. The list shows the first five terms in Marco's pattern.

$$
3,5,8,13,21, \ldots
$$

What are the next 3 terms?
a) $27,34,42$
b) $29,37,45$
c) $34,55,89$
d) $34,55,99$

Use the words to label the image below.

Read and match.

Fractions consist of three parts:
Numerator
Fraction bar
Denominator goes between the numbers.
It is the bottom part of the fraction.
It is the top part of the fraction.

Read and complete the sentences.

A pizza might be cut into 8 pieces. In a fraction, the number 8 would be \qquad .

If you take four slices of that pizza, the number 4 would be \qquad .

Read and choose the correct words for the explanation.

Decimals do use / do not use a slash to indicate what part of the whole they represent. Instead, the decimal point means that the numbers are below / are not below one.

Without a decimal / With a decimal, the whole is considered to be based on 10, 100, 1000, etc. It all depends on how many spaces to the right of the decimal the number goes.

Look at the example:
$0.05=$ five-hundredths $=5 / 100$

Converting fractions to decimals by using division the "Simplest method." The following fraction can be stated as:

2 / 3 is 0.66
2 divided by 3 is 0.66
$2 \div 3=0.66$
Can you explain how this operation is done and how the result is read?

Convert these to decimals.
a) 8

40
d)

6
g) 32

50
b) 6

e) 8

10
h) 32
— =
40
c) 18
$\square=$ 20
f) 2
4
i) 2

Method 2

Convert a fraction to a decimal - the whole process.

- Find a number to multiply the denominator by so that it becomes 10, 100, etc.
- Multiply both numerator and denominator by the number you found.
- Write the top number with the decimal point.

Convert these fractions to decimals following the whole process.

so --- converted to decimals is \qquad .
so --- converted to decimals is \qquad .

Convert a decimal to a fraction

The whole process

- Write down the decimal divided by 1.
- Multiply both top and bottom by 10, 100, 1000, etc. (depending on the numbers that are after the decimal point).
- Simplify / reduce the fraction.

Convert these decimals to fractions following the whole process.
0.625

2.35

Below are the answers for the questions on the next page. Read and convert the decimals to fractions. Then write the letter for the correct answer.
A
B
C
D
F
G
33
16
25
17
40
80
20
8
40
$0.85=$ \qquad

majrid You're up!

Read and answer the questions - illustrate your answers.

There were 120 words to study and categorize. Group 6A categorized $1 / 3$ of the words, 6B categorized $1 / 2$ of the words and 6C categorized
$1 / 6$ of the words.
How many words did each group categorize?
$6 \mathrm{~A}=$ \qquad
$6 \mathrm{~B}=$ \qquad
$6 \mathrm{C}=$ \qquad
Convert the fractions into decimals.

$f(x)=$?
52

Lucy and Nancy are two girls who love studying English. They are in the same English class. Yesterday, their teacher told them that she will be checking their work in their grammar books, Lucy has completed 2 / 3 of her grammar book. Nancy has completed 5 / 6 of her grammar book.
Which girl has completed more of her grammar book?
Show:

- how to compare fractions.
- the answer as both fractions and decimals.

UNIT 4 Volume of cubes, prisms and pyramids

Look at the board below and add up numbers as you go.

Notice that you have to start at the bottom left (number 5 in green) and finish at the right top (number 4 in blue).

You can go one square at the time in any direction (up, down, left or right).

Can you find the way to make exactly 53?
What is it? \qquad
Can you find the way to make exactly 60 ?
What is it? \qquad

What is a cube?

A cube is a three-dimensional shape that has equal width, height, and length measurements.

A cube has six square faces, all of which have sides of equal length and
 meet at right angles.

Finding the volume of a cube is a snap (something that can be done easily). All you need to do is:

- multiply the cube's length X width X height.

Tip 1. When you are asked to find the volume of a cube, you'll be given the length of one of the cube's sides. If you have this information, you have all you need.

Tip 2. If you are attempting to find the volume of a real-life object shaped like a cube, use a ruler or a tape measure to measure a side of the cube.

Look, read and complete.

What is the height of the cube? $\mathbf{S}=$ \qquad
Now, cube this number by multiplying it by itself twice.
$\mathbf{S} \times \mathbf{S} \times \mathbf{S}=$ or $\mathbf{S}^{\mathbf{3}}=$
This simple process gives you the volume of a cube!!! So the volume of the cube is \qquad .

Note! Remember that it is really important to label the answer using the same measurement unit. For example:

- If the original measurement unit was inches, use in.
- If the original measurement unit was centimeters, use cm.
- If the original measurement unit was meters, use m.

Look and calculate the volume of the cubes.

70 cm

12.8 cm

8.06 cm

\qquad

\qquad

The volume of a pyramid

When you are asked to find the volume of a pyramid, you have to:

- find the product of the area of the base and the height.
- then multiply the result by $1 / 3$ or simply divide by 3 .

Let's find out how to calculate the volume of a pyramid with a rectangular and a triangular base. Follow the steps.

Pyramid with a rectangular base

What is the length of the base? \qquad
What is the width? \qquad _
Multuply the length and width to find the area of the base.
The area of the base is \qquad
Multiply the area of the base by the height. Divide the result by 3 .

The result is $120 \mathrm{~cm}^{3}$. Yes \qquad / No

Pyramid with a triangularbase

Find the length and the width of the base.
What is the length of the base?
What is the width of the base?
Consider the values as the base and the height of the triangle
Calculate the ared of the base like so:
$A=1 / 2(b)(h)$
$A=1 / 2(4)(3)$
$A=1 / 2(12)$
$\mathrm{A}=$ \qquad cm^{2}

Now multiply the area of the base by the height of the pyramid. The area of the base is \qquad cm^{2} The height is \qquad cm.
\qquad $\mathrm{cm}^{2} \times 6 \mathrm{~cm}=$ \qquad cm^{3}.

Divide the answer by 3.
\qquad $\mathrm{cm}^{3} / 3=12 \mathrm{~cm}^{3}$. Yes \qquad / No \qquad

The process to calculate the volume of rectangular prisms is as easy as the ones for the cubes and pyramids. The only thing you have to do is follow the formula; it actually shows steps to follow.

Calculate the volume of rectangular prisms. This is the formula:

- Volume $=$ Length x Width \times Height

Answer: \qquad cm^{3}

Answer: \qquad m^{3}

Time to do some research!!!

Look around the classroom, walk around school or think of things which have the shapes. Use a tape measure or a ruler to get information and calculate the volume of each.

$f(x)=$?

Talk to a friend and write the formulas to calculate the volume of all the shapes - this formula card is for you to study so make it simple and easy to remember.

Formulas to calculate the volume of shapes

Proportions

TAKE тHE
CHALLENGE

Look at the chart and the fractions below.

 Place the fractions in the squares so that each row and column has a sum of 1 .Two of the fractions have been added to get you started.

Amazing math puzzles and mazes by Cindi Mitchell
What is proportion?
It is the number, amount or level of one thing when compared to another.
A proportion, on the other hand, is a true statement - it shows
that two ratios are equal.
What is a ratio?
A ratio is a comparison of two numbers by division.

- Look at an example of a proportion. Then write two more examples.

Read and complete the paragraph.

If water is on sale -2 liters for 3 dollars then the ratio $2 / 3$ expresses the relationship between the \qquad and the \qquad of the water.
Since the ratio is constant, we can buy 4 liters for \qquad dollars, 6 liters for \qquad dollars, etc.

How do you compare ratios?
A ratio is a way of expressing the relative sizes of parts of a group. Ratios are used in different fields like baking or science. When two ratios are equivalent, they are in proportion. To find out if two ratios are in proportion, you have to work with the ratios as equivalent fractions. The aim is to make true statements about their values.

Try this!

Club 1: 6 to 4
Club 2: 39 to 26
Step 1. Find and circle the denominator of each ratio.
You can express the ratios in two ways:

- using a colon - 1:2
- a fraction bar - 1

2
If one club's ratio of boys to girls is 6 to 4, and another club's ratio of boys to girls is 39 to 26 , you have to rewrite the ratios as $\frac{6}{4}$ and $\frac{39}{26}$. So the denominators are \qquad and \qquad .

Step 2. Find the LCM for the two denominators.
4: \qquad , \qquad , \qquad ,

26: \qquad , \qquad ${ }^{\prime}$ \qquad , \qquad , \qquad , ...

Step 3. Write the equivalent fraction for the first ratio.
Divide the LCM by the denominator and multiply the numerator by this quotient.

- $52 \div 4=13$
- $6 \times 13=78$
So the new fraction becomes $\frac{78}{52}$.

Step 3.1 Do the same process for the second fraction.
Write the equivalent fraction for the second ratio.
Divide the LCM by the denominator and multiply the numerator by this quotient.

- $52 \div 26=2$
- $39 \times 2=78$

So the new fraction becomes
So the new fraction becomes $\frac{78}{52}$.

So,

$$
\frac{6}{4}=\frac{39}{26} \quad \text { Yes: } \quad \text { No: }
$$

- Try these word problems. Put a tick $(\sqrt{ })$ next to the right answer.

A man has a store in the city centre. On Saturday, he sold 10 cans of soda and 20 bottles of water. On Sunday, he sold 9 cans of soda and 12 bottles of water.
During which day did he sell a lower ratio of cans of soda to bottles of water?
On Saturday \qquad On Sunday \qquad Neither, the ratios are equivalent. \qquad

Samantha went on a two-day camping trip. On the first day, she saw 18 squirrels and 4 hummingbirds. On the second day, she saw 16 squirrels and 3 humming birds. On which day of the camping trip did Samantha see a lower ratio of squirrels to hummingbirds? The first day

The second day \qquad Neither, the ratios are equivalent. \qquad

In Martin's music class, 15 of the students play the classical guitar and 20 play the electric guitar. In Monica's music class, 12 of the students play the classical guitar and 16 play the electrical guitar. Which class has a higher ratio of classical guitar players to electric guitar players?
Martin's class \qquad Monica's class \qquad Neither, the ratios are equivalent. \qquad

Of the 15 -year-olds at a sports club, 5 have black hair and 8 have fair hair. Among the 16 -year-olds, 8 have black hair and 15 have fair hair. Which age group has a lower ratio of black hair to fair hair?
15-year-olds \qquad 16-year-olds \qquad Neither, the ratios are equivalent. \qquad

														-	-								
														,									
												,											

Note: You can also use Cross Multiplication to compare ratios. This process is also a snap.
Step 1. Write the ratios 72 to 8 and 78 to 52 as fractions.
Step 2. Take the first numerator and multiply it by the second denominator.
Step 3. Take the first denominator and multiply it by the second numerator.
Step 4. Compare results.

12			12	X	52	$=$		624			8	X	X	78	$=$	624			
8	52																		
624	$=$	624	So,		12		78												
					8		52												

Percent

What does Percent mean? \qquad

How can you express the following percents as fractions?

25 \% = \qquad $83 \%=$ \qquad
60 \% = \qquad $95 \%=$

A percent can also be regarded as ratio in which 100 represents the total number in the group. Look at the following example:

Thirty percent of the kids who participated in a festival were 10 years old. If 22 kids are 10 years old, how many kids were in the festival in all?

Create a ratio box - analyze how the information was organized.

What percent do you have to find? .

What does the letter o stand for?

What does the letter 1 stand for? \qquad .

A total of 40 kids were in the festival.

Example 2

In the Charleston Primary school there is an amazing orchestra. Last week, there was a national contest. Only 40% of the orchestra members played in the event. If 24 members did not play, then how many did play?

Played	Percent	Actual Count
	$\mathbf{4 0}$	\mathbf{p}
Did not play	$\mathbf{6 0}$	$\mathbf{2 4}$
Total	$\mathbf{1 0 0}$	\mathbf{t}

$$
\begin{aligned}
& \text { Step } 2 \\
& =40 \times 24 \quad \mathrm{p}=\frac{40 \text { Step 3 }}{40} 624
\end{aligned}
$$

$p=16$
A total of 16 members played in the event.

Read and organize the information in the table. Then follow the whole process to find the answer.

Example 3

Sonia is going to give a speech for her liferature class. She is a little bit concerned because her formal shoes are pretty old. Hermum noticed that and they have decided to go shopping for a new pair of shoes. They went to the Bright Plaza. Sonia's mum paid 60% instead of 100%, so she saved 40% of the full price. You are given what Sonia's mum paid and you are asked what the full price was, which is the 100% price.

The full price for the new pair of shoes was \$76.

Read and solve the percent problems．Create a box to organize the information．

A man who has a store in the local mall is really happy because he has sold all the cameras he had in stock and is planning to get new merchandise．
Forty percent of the new cameras are digital cameras．If 24 cameras will not be digital

Michael Dawson is a very famous baseball pitcher．This season he won 80% of the games he pitched．If he pitched 35 ballgames，how many games did he win？

A little girl earned a grade of 80% on a science test that had 20 questions．How many questions on this test did the girl answer correctly？

								－																		

Sequences and series

TAKE тне CHALLENGE

Then add 5 to it.
Next, multiply the result by 3.
After that, subtract 15 from the result.
Finally, divide the result by 3 .
Did you get the same number?

Can you read people's minds? Try this process with several friends. Ask a friend to think of a number between 1 and 20 and write it on the line.
Friend 1. \qquad

Friend 2. \qquad

Friend 3. \qquad

Friend 4.

Friend 5.

Can you explain why you get the same number?

Read the definitions and decide on which concept is being described.
Do you know what patterns and sequences are?
a)

It is a series of related things or events, or the order in which they follow each other.
b)

It is any regularly repeated arrangement, especially a design made from repeated lines, shapes or colours on a surface.

Look and explain the pattern sequences.

介 \Rightarrow 人

Arithmetic sequences

Numbers can also be used to create interesting patterns.

Read and provide the information.

Arithmetic sequences are built by adding the same number each time.

Example 1

$1,4,7,10,13,16,19,22,25$, \qquad , ... The pattern is "add \qquad each time." Example 2
$3,8,13,18,23,28,33,38$, \qquad , \qquad , \qquad , \qquad , _ , \qquad , \qquad , \qquad , .

The pattern is "add \qquad each time."

Read and choose the correct answer.

Why didn't you get the same numbers?
a) Because you followed a different pattern.
b) Because you did follow the pattern.
c) Because you started with a different number.

Read and write numbers.

Add six, then subtract three.
$1,7,4$ \qquad , \qquad
\qquad , \qquad , \qquad , \qquad , \qquad ${ }^{\prime}$ \qquad , ...

Add five, then subtract two.
11,
 , \qquad ' _' \qquad , ...

Subtract seven, then add eight.
10, \qquad , ...

Subtract three, then add four.

8, \qquad , \qquad , \qquad , \qquad , \qquad , \qquad ${ }^{\prime}$ \qquad , \qquad , \qquad , \qquad , \qquad , ...

Geometric sequences

Geometric sequences are built by multiplying the last factor by the same number each time.

Example 1

$2,4,8,16,32,64,128,256$, \qquad , \qquad , \qquad , \qquad , \qquad , ...

The pattern is "multiply the last factor by \qquad each time."

Example 2

$3,9,27,81,243,729,2187$, \qquad , \qquad , \qquad , \qquad
The pattern is "multiply the last factor by \qquad each time."

Read and write numbers.

Pattern 3

5, \qquad , \qquad , ,

4, \qquad , \qquad ,

6, \qquad , \qquad , \qquad

\qquad , \qquad , \qquad ,...

Multiply by 2 , then subtract 3 .
5, \qquad , \qquad , \qquad
\qquad , \qquad , \qquad , \qquad ...

Multiply by 5 , then subtract 9 .

3,
 \rightarrow, \qquad , \qquad , \qquad , \qquad , \qquad

Multiply by 3 , then add 8.
6, \qquad , \qquad

Multiply by 4, then add 11.
7, \qquad , \qquad ,...

Special sequences - Triangular numbers

This sequence can be formed by using a pattern of dots which forms triangles. Look, read and think. Then draw dots and lines to show all the triangles in it.

1
10
Dots

3
Dots

$1+2=3$
15 Dots

6
Dots

$1+2+3=$ \qquad
$=$ \qquad
=
$\overline{\text { Dots }}$

=

Special sequences - Square numbers

This sequence can be formed by multiplying a number by itself.

…..

$\ldots .=X_{\sim}=$
$\ldots . .=$ _ ${ }^{\prime}=$
$\ldots . .={ }^{x}$ _ $=\ldots$

Dots
$\ldots .={ }_{-} X_{\ldots}=$

Special sequences - Cube numbers

This sequence can be formed by cubing a number. It means that you must multiply a number by itself twice.
Look and draw lines to show that the numbers have been cubed.
"Notice how the rows get arranged."

$f(x)=$?

Look and think. How would you complete the boards?
What are the operations?

$\ldots \ldots . . \quad \ldots \ldots .+\ldots \ldots .=$ \qquad $+$ \qquad $=$
$+$ \qquad $=$

How would you colour the balls in sections 1, 3, 6 and $9 ?$

1

3

6
©

12

How would you complete this number board?

